JF Ptak Science Books Post 2204 History of Dots series
JF Ptak Science Books Post 2204 History of Dots series
Posted by John F. Ptak in History of Dots | Permalink | Comments (0) | TrackBack (0)
J Ptak Science Books Post 2160
Part of the History of Holes & History of Lines series
This curious illustration appears in forty-five volume Cyclopedia of Abraham Rees (published 1795-1820), displaying a system for communicating over distances at night. When this part of the Cyclopedia was printed in 1808, the electrical telegraph was still 37 years away from coming into being--45 years from being somewhat well-used. Before this time (visual) communications over long distances at night were limited to just these sorts of means--lighted semaphores, hand-held torches, that sort of thing.
The system outlined in the (first) illustration above shows how a semaphore was articulated to produce telegraphic signals at night, fashioned with arms that had changeable holes in the arms, allowing light through to specify letters. As cumbersome and time-consuming as this might seem, it was about the only way to communicate remotely across distances (and at night)--so to transmit messages over miles there would be a series of installation s such as these on hilltops, transferring the message from one ot the other, until the destination was research. This idea did not look so antiquated until the electric telegraph took over, making it seem as though this fire-and-wood technology was 500 years old. It was that, and older still--but it is the product of revolutionary development that the great discovery can sometimes bring upon instant antiquarianism on whatever it was that was being replaced.
Signaling at sea at night was somewhat different at this time and didn't include anything remotely close to the alphabet. So the rather complex system that we see here (above) is extremely uncommon--it seems also very unwieldy to put into effect. Unfortunately I don't have the text volume that would explain then entire system and implementation, so I'm going to guess that there was a large, powerful light source that was covered by a tight, black, covering tablet that would eliminate nearly all light leakage. The symbols for each letter of the alphabet (and numerals) would be cut out from another tablet that would fit over the face of the light source, placed between the blank and the light. To transmit a letter the user would then simply remove the blank covering tablet to reveal the light broadcast by the hole or slit in the tablet underneath. The blank would then be placed back, a new tablet for a new letter placed underneath, and the process would begin again: blank (dark); letter (light); blank (dark); letter (light), and so on to the end of the message. I guess the distance at which these symbols could be seen would be dependent on light source, atmospheric conditions, ad so on. The way that the letters are made into symbols seems to me very intelligent, so that you distinguish the differences from an appreciable distance. I like it--its an elegant idea. (Well, maybe it didn't work in this manner, but it seems to make sense to me.)
The image of the full sheet:
Posted by John F. Ptak in History of Dots, History of Lines | Permalink | Comments (0) | TrackBack (0)
JF Ptak Science Books
In a continuing series on the History of Dots I'd like to add the following, disconnected though they are, so I don't lose them in the coming mix. It is also one of my few chances to actually need to use the word "scrofula"--a lonely, ugly word, a word as unpretty as "Susquehanna" is pretty, a word that should be as timid, but isn't, a word that really exercises all parts of your mouth when you say it out loud. (Try it--there's like five or six movements involved in getting that past your lips.)
To be truthful about it, it isn't so much about scrofula as it is about the "curing " of the disease with special little pills: the Popular Pill! This woodcut appears in a short sales treatise, published in London in 1675 or so, by Humphrey Nendick, (the delightfully titled) A Compendium of the Operations Vertues and Use of Dr. Nendicks Applauded Pill, against all Chronick Diseases,m curing by the cleansing of the blood, That most successful medicine, which is so deservedly called, the Popular Pill. For its Spcial vertues, safety and success, against the Dangerous and our Nations Popular Disease, the Scurvy. I'm not so sure about what
Dr. Nendick was up to with the pill, but I do know that is was obtainable from grocers, bakers, cutlers, gunsmiths and barbers all over England at three shillings for forty tiny dots of possible joy. Its imaginary Galenical powers were supposed to bear against the tedium and insolence of all manners of scurvies and popular complaints--much like its contemporary dot/pill rivals like Pilulae Anti-Scurbuticae (sold at the Carv'd Posts in Stonecutter Street between Shoe Lane and Fleet Ditch (!)).
Albrecht Durer doesn't seem to have many dots at all in his works, though I did stumble upon this image from Sebastan Brant's Navis Stultifera (Basle, 1497)--a fool interrupting a mother and daughter who were "discussing" their game of backgammon.
On the other hand the history of the construction of the periodic table is necessarily filled with dots, as we see with the monarchical creation of John Dalton (1766-1844), in his New System of Chemical Philosophy (part II), and which was printed in 1810--these symbols were sued to visually represent the atomic structure of compounds, and were of vast importance and predictive powers, marking the true modernizing of chemistry. It was in Part I of this work that Dalton first applied atomic theory to chemistry.
This last element for this installment on dots simplifies things enormously, sort of, even though these dots represent the very building blocks of almost everything else. They represent counting. And they are beautifully present in this image from Franz Brauner's Rechenbuch fuer osterreichische Volksschulen (published in 1953). Funny that this "Rechenbuch" turns up again here in 1953--its been the major part of titles of books describing the laws of arithmetic for 450 years.
Posted by John F. Ptak in History of Dots | Permalink | Comments (0) | TrackBack (0)
JF Ptak Science Books [Another in the History of Dots series.]
The molecular chemistry of dots of 1947 is a beautiful thing, worthy of a powers-of-ten episode, though I can only do a gigantically scaled down version of it (a powers-of-two maybe) given pixelation and its dot-defeating and necessary tendency to relieve roundness and introduce squares everywhere.
Posted by John F. Ptak in History of Dots | Permalink | Comments (0) | TrackBack (0)
JFPtak Science Books Quick Post History of Dots series
It has been quite a while since my last contribution to this series, and I'm sorry that this addition is such a quick one--it is, however, unexpected and lovely.
The engraving, "Monument of Nicholas Gaynesford and his Wives in Carshalton1 Church" was published in Lyson's The Environs of London, 1796 (though this may be reprinted just a bit later), and depicts the very large monument to Gaynesford (1471-1548). What is particularly remarkable for me is the incredible stipple work that forms the background. On first glance the background treatment seems to be solid, but there is something else there that gives it a depth and causes the collection of stark white figures to seemingly float on the page. This is the cause:
This detail is about 20 square millimeters from the original and is just absolutely filled with small dots. A closer look reveals even more:
There's a few hundred thousand of these marks in the image, which measures only about 35 square inches.
Posted by John F. Ptak in History of Dots | Permalink | Comments (3) | TrackBack (0)
JF Ptak Science Books Post 2011
There is an interesting side note to this blog's series on the histories of holes and dots--a mathematical aspect involving decimal points, decimal notation and placeholders. This is exclusive of the number zero, however, which is an entirely different topic.
The book that this beautifully-illustrated counting board (below) is found is in Gregor Reisch's (1467-1525) Margarita Philosophica (1503) and depicts (amidst much else in the greatly humanist volume) representations of the mathematicians Boethius and Pythagoras working math problems on the given tools of their day. The tools on the right seem to be circles, but they're not--they're counting stones, and for our intents and purposes here, they shall be dots, and in the history of dots in math and business reckoning they have had a strong and long life.
We can see in his expression that Boethius, on the left, is rather enjoying himself, knowing the superiority of his system of counting, which was the the Hindu-Arabic number notation--he definitely has a sly, self-appreciating smile on his face. Pythagoras, working with the old counting table, definitely looks worried, or at least unhappy, unsettled. Never mind that Pythagoras (570-495 b.c.e., none of whose works exist in the original, another sort of entry in our Blank History category) was at a definite disadvantage in the calculating department, being dead and all that for hundreds of years before the Arabic notation was more widely introduced in the West, probably being introduced by Pisano/Fibonnaci in the 12th century. But it does fall to Boethius, the smirker, to have introduced the digits into Europe for the very first time, deep into the history of the Roman Empire, in the 6th century.
The numerical stand-ins in the Reisch book with which Pythagoras worked were blank, coin-like slugs used as placeholders, and would be used in place of rocks or pebbles or whatever other material was at hand. It is interesting to note that the Latin expression, "calculos ponere", which basically means "to calculate"or "to compute", is more literally translated into "to set counters" or "to place pebbles" (upon a counting board) or to set an argument2, which is exactly what some of the Roman daily reckoners would do at their work. And also used, in this case, by the unhappy Pythagoras.
The foundation for the .14159... that comes to the right of the integer 3 in pi is a relatively recent idea in the history of the maths--at least so far as the represrntation of the ideas in numbers and the decimal point is concerned.
Simon Stevin (1548-1620) introduced the idea of decimal numbers in his 36-page De Thiende ('The Art of Tenths"1) in 1585, an idea that replaced much more cumbersome earlier methods of representation. So, the number 3.14159 would be written in the Stevein notation as (where in this case numbers enclosed by brackets, i.e. "[9]" would have been represented in print as a 9 within a circle) 3[0]1[1]4[2]1[3]5[4]9[5]. It is also seen here:
[Source: math Words, here.]
[Full text available here.]
The importance of the introduction of this idea is difficult to underestimate, according to many and by example the The Princeton Companion to Mathematics by Timothy Gowers:
The Flemish mathematician and engineer Simon Stevin is remembered for
his study of decimal fractions. Although he was not the first to use
decimal fractions (they are found in the work of the tenth-century
Islamic mathematician al-Uqlidisi),it was his tract De Thiende (“The tenth”), published in 1585 and translated into English (as Disme: The Art of Tenths, or Decimall Arithmetike Teaching ) in 1608, that led to their widespread adoption in
Europe. Stevin, however, did not use the notation we use today. He drew
circles around the exponents of the powers of one tenth: thus he wrote
7.3486 as 7�3�4�8�6�4. In De Thiende Stevin not only demonstrated how
decimal fractions could be used but also advocated that a decimal system
should be used for weights and measures and for coinage.
This idea would be further developed by Bartholomeus Pitiscus (1561-1613) who was the first to introduce the decimal point in 16123. It was a far more robust and simple was of dealing with decimal notation than anything that had come before.
Notes:
1. Decimal arithmetic: Teaching how to perform all computations whatsoever by whole numbers without fractions, by the four principles of common arithmetic: namely, addition, subtraction, multiplication, and division.
2. The Reisch book is remarkable: it is basically a Renaissance encyclopedia of general knowledge, divided into twelve books: grammar, dialectics, rhetoric, arithmetic, music, geometry, astronomy, physics, natural history, physiology, psychology, and ethics.
3. Pitiscus was also the first to introduce the term "trigonometry" earlier in 1595 in a highly important and influential work he produced in 1595.
Posted by John F. Ptak in History of Dots, History of Holes, mathematics, logic | Permalink | Comments (0) | TrackBack (0)
JF Ptak Science Books Part of the History of Dots series Post 2007
Long is the line in the history of art--far less so the dot.
The line has been part of a long and deep inheritance of rendering a truth, factual, perspectival presence--in general, at least. Certain symbolic and metaphoric elements will sometimes confuse and collapse bits of the image, but the effort for centuries has been to present a balanced nature as close as practicable to its perfection. That was the strength of the line.
The strength of the dot was in doing something not quite the opposite but approaching it.
It is interesting to think of the importance of dots in the first revolutionary changes in 500 years in the history of art. Honestly, there wasn’t anything epochal that happened between the re-discovery of perspective (ca. 1330-1400) and the arrival of Impressionism (and just afterwards of non-representational art) in the 1872/3/4-1915 period.
Dots aren’t brought to bear formally in the revolutionary movement until the early 1880’s. Impressionism for all intents and purposes is formed with the Societe Anonyme in 1872 (whose members included Monet, Pissaro, Degas, Sisley, Morisot and eleven others), and perhaps more realistically in 1874 when the Societe exhibited its first salon. (The first show held at the Nadar Studio in Paris in April 1874; a tiny, one month long affair, compared to mammoth exhibitions like the Universal Exposition in Paris in 1867.)
It was Georges Seurat who brought the whole world to the dot experience with his artistic method of Pointilism, in particular with his magnificent Un dimanche après-midi à l'Île de la Grande Jatte, an enormous work given its composition—dots. The dots replaced the brushstroke, and their placement in relation to their color was an absolutely brilliant innovation, establishing a perfect result for the viewer when examining the work as a whole. (It may well be that the French chemist an designer Michel Chevreul made this discovery a few decades earlier, noticing the effect and changes in color depending on placement and—in his case, with fabric—color in the dyes for his material.)
Wassily Kandinsky (1866-1944), the discoverer of nothingness in art and the introduction of the first non-representational paintings in art history (1913) used his fair share of dots in his exploration of the previously invisible. One good example is his 9 Points in Ascendance (1918), which is nothing but black dots, an impossible composition just two decades prior to its creation.
In the middle of this appeared the half-tone illustration, the great liberator of photographic illustration in popular publication. Invented in the late 1870’s by Stephen Henry Horgan and used in the Illustrated London News for the first time in 1881, it made the publication of accurate images much feasible and economical. No longer were readers dependent on the accuracies of artists interpreting photographs or photographed scenes—the photographs themselves were now publishable at little cost and in high quality, vastly increasing the veracity of published reports dependent upon images. This was revolutionary in its own way, democratizing the sharing of images and icons.
That said about dots, the line was surely used to transport a bit of reality in art, even before the 18th century--among the earliest appearances being with Hans Holbein in his The Ambassadors of 1533, and a beautiful and very famous use was made by Andrea Pozzo in his illusionistic works at S. Ignazio in Rome in 1685 (and which I mention in an earlier post). Certainly Carel Fabritius attempted and succeeded in this throughout his career, playing with the substance of perspective, as we can see here in his View in Delft, in 1652:
Also the lines of the anamorphic image severely distorted the presentation of reality--if you had the mirror to distort it and if you had the mirror to reconstitute it:
Source: Anamorphic Art
This example is much more recognizable in widely-circulated images of the modern work of people like Kurt Wenner, who have continued in the tradition of Leonardo's researches in the difficulties of wide angle distortion:
Seeing this collection of dots in the construction of human faces I was reminded very strongly of the portraits made on the typewriter by Julius Nelson in his work, Artyping, published and sold for a dollar by the Artyping Bureau of Johnstown, Pennsylvania, in 1939 (and pictured first, above). Nelson was an instructor in "secretarial science" in Windber High School in Pennsylvania and no doubt put together this pamphlet as something expressive of his artform and as an advertisement for his profession. This was hardly the first time that anyone used the typewriter artistically, as I can recall some measure of artistic expression in type in Punch magazine as far back as 1869, though portraiture by typewriter does not appear to be a very wide section in the art world between those times. In any event, a portrait that he made here is rather close to those presented on the Modern Metropolis site--the "Dot Portraits" Nathan Manire.
Modern Art would have the final dispositional comment on the typewriter as an instrument of art, when Claes Oldenburg made his Soft Typewriter in 1963:
Posted by John F. Ptak in Art, Art History, History of Dots, History of Lines, Perception, Perspective | Permalink | Comments (0) | TrackBack (0)
JF Ptak Science Books Post 1977
It seems to me that in the history of astrology--or at least for what seems to be most of it, at least through the late antiquarian publishing aspect of it--that comets and meteors were basically not utilized. Perhaps it was because in that world these entites didn't really effect anything--perhaps they were simply mysterious, spurious, and incongruent, and not a subject for installation in the astrological night sky. Comets (from the Greek, kometes, "long-haired") and meteors (Greek again, from meteoran, a "thing in the air") and bolides (exploding meteors, from the Greek bolis, or "missile"), holosiderites, siderolites, aerolites uranolites, and so on, have a long and complex story in the history of astronomy, at least in some ways; perhaps the most influential thinker on comets held thinking at bay and did so for two milennia: Aristotle's Meteorology made the case that comets were not a planet or associated with planets or even necessarily part of the heavens--rather they were a phenomena of the atmosphere. So perhaps their use as astronomical/astrological objects was limited by their very Aristotlean obviousness of being near-Earth objects.
The Comet of 1066 (later named Halleys' Comet), as depicted in the Bayeux Tapestry (completed in the 1080's)
The fear aspect of comets--the Comet of 1528--was depicted in Ambrose Pares Livres de Chirurgie (1597), and shows what part of the concern was (the coming demise of nations, the death of rules) with the appearance of decapitated heads and a large sword and raining daggers:
[Nicolas Le Rouge, Le Grand Kalendrier et Compost des Bergieres, published in 1496 in Troyes.
The night sky is a mnemonic device, a place to store memory and a holder of the alphabet of myths and beliefs of all, a culture written large across the sky. Meteors and comets were not predictable, and could add nothing insofar as a consistent bit of storytelling was concerned, though they certainly created their own stories in each observed appearance; they could also add punctuation and exclamation to whatever constellation they appeared in. For example if one appeared in a juncture with Jupiter, a major event for royalty would possibly be foretold. But as a permanent element to the visualization of the night sky, they had little power even though they seemed to be displays of fantastic energy and power in themselves.
[For some reason the celestial court, divided by sunlight and flanked by two other sources of light, have ofund it expedient to issue comets from the mouths of Heaven Canon. I'm not sure what's going on in the forground with the fellow working his spade next to the triangular blankness. the man to his right seems to have been overtaken in fear (as have the group of people visible to the left over the shoveler's shoulder).]
[Halley's comet appears again on the title page of this work by the Hungarian George Henischius, a professor of rhetoric, mathematics and medicine at Augsberg.]
Posted by John F. Ptak in Astronomy, History of Dots, History of Nothing | Permalink | Comments (0) | TrackBack (0)
JF Ptak Science Books Post 1963
Sometime we see a Cloud that's dragonish,
A Vapour sometime like a Bear, or Lion,
A tower'd citadel, a pendant Rock,
A forked Mountain, or Promontory,
With Trees upon't, that nod unto the World
And mock our Eyes with Air.--Anthony and Cleopatra (Act IV Scene II) from the title page of Cozens' A New Method..., 1785
This blog maintains a longish thread on the History of Dots, but no where in there yet is any appreciation or discussion of the blot (the "blot" being "the unhappy and rejected love of the Dot" not according to Ambrose Bierce).
Cloud-writing is difficult work, mostly because it involves making the invisible visible in an imaginary landscape. This is I think exactly what Alexander Cozens (1717-1786) had in mind when he wrote about using ink blots for inspiration in preparing a landscape, writing about it in his A New Method of assisting the Invention in Drawing Original Compositions of Landscape. In 1785. He had the idea in mind and was using it in lessons for decades before that, but the work only found its way into print at the end of the century, a year before his death--and more than a century before such thoughts began to enter the early archaeology of the social meme. In a way he wrote about implementing a sort of simple calculus of discovery, of seeing the impression of possibilities in, well, anything, but particularly in the memory and sensation of forms.
These weren't literally what we would think of today as ink blots--they were suggestive forms that sort of looked like blots from which more determined and refined images could be made. He suggested that landscapes be generated as instinctively as possible, with blots being used to arouse memory and curiosity and to be incorporated into or suggestive of natural forms in constructing the landscape. [Although the word "blot" reaches back into the 14th century according to the OED, the version that Cozens had in mind I think was the verb "blot", which appears around 1440, and which means "to spot or stain with ink or other discolouring liquid or matter; to blur" (emphasis mine). It seems to me that the blot art that Cozens had in mind was both a blurring and a refining method, something that could release the artist and allow the mind to roam freely around the blot's inspiration and the artist's landscape memory. as Simon Schama says about the blot in Landscape and Memory, "there blots were deliberately random impressions meant to express, rather than to slavishly outline, the natural heaping of rock forms. The impulsiveness and spontaneity of their production served to reinforce the new idea...that mountains were dynamic, even turbulent things..." (page 461).]
Cozens was working on imagination and discovery, a way to make an improvisation in art, a riff on whatever the ink blot might suggest to the viewer. On page seven of his pamphlet he describes The Blot:
‘A true blot is an assemblage of dark shapes or masses made with ink upon a piece of paper, and likewise of light ones produced by the paper being left blank. All the shapes are rude and unmeaning, as they are formed with the swiftest hand. But at the same time there appears a general disposition of these masses, producing one comprehensive form, which may be conceived and purposedly intended before the blot is begun. This general form will exhibit some kind of subject, and this is all that should be done designedly’ (p.7, from The Tate description),
In a way it Cozens reminds me of Leonardo's cracks and shadows:
"...if you look upon an old wall covered with dirt, or the odd appearance of some streaked stones, you may discover several things like landscapes, battles, clouds, uncommon attitudes, humerous faces, draperies, &c. Out of this confused mass of objects, the mind will be furnished with abundance of designs and subjects perfectly new".--Leonardo Treatise on Painting (in the English translation published in 1721), pp 5-6
Another example from the Metropolitan Museum of Art of Cozens' "A Blot-Lake with Boat, Surrounded by Trees":
Cozens worked for insight, for "the art of seeing properly", for surprise, the discovery of forms. IT was an extraordinary work, especially given its time, ten and more decades and more away from the work of Redon and ernst and the rest of the suggestive painters, and even seven decades out from Courbet. It was slightly closer in time to the quizzical work of Justinus Kerner, whose Kleksographien of 1890 used ink blots in a parlor-game fashion for his readers to fashion stories and narratives with. (A full text with illustrations of the 1890 edition of the work is found here, in the digital collections of the University of Heidelberg).
An example of Kerner's work:
And well in advance of Hermann Rorschach's 1921 book Psychodiagnostik, which employed the use of ink blots to help him diagnose schizophrenia, the predictive and diagnostic aspect of the idea coming in 1939, not as a result of Rorschach's doing).
What these blots might all have in common was their pre-modern earliness. their anticipation of something that would become a standard framework in the decades--or centuries--to come.
Posted by John F. Ptak in Art History, History of Dots | Permalink | Comments (0) | TrackBack (0)
JF Ptak Science Books Quick Post Part of a series on The History of Dots
Colbert de Lostelneau's (French Marshall and Commander of the French Royal Guards) Le
mareschal de bataille...1and printed by Estienne Mignon
in Paris inthe year 1647, is one of the earliest books to be printed in
colros. This rare book, which was a superior cummulative work on
tactics and strategy and military thought (and which in parts leaned
very heavily on earlier and sometimes unattributed books), employed the
new venue of color printing to highlight its musketeers/pikemen/cavalry
symbols in three shapes and in three colors for easier understanding of
the movement of three different aspects of an army. It is said that in
this way the military theory was made more adaptable and practicable.
In the history of dots, though, these color-printed varieties are significant as being among the first of their kind.
And the full image (both of which are located at Gallica--website for the Bibliotheque Nationale de France, here):
Continue reading "The History of Dots: Dots in the Harmonious Motion of Battle, 1647" »
Posted by John F. Ptak in History of Dots, Information, Quantitative Display of | Permalink | Comments (0) | TrackBack (0)
JF Ptak Science Books Post 1932
"That those spots and brighter parts which by our sight might be distinguished in the Moon, do show the difference between the Sea and Land of that other World... The spots represent the Sea, and the brighter parts Land... That there are high mountains, deep valleys, and spacious plains in the body of the Moon... That there is an atmosphere, or an orb of gross vaporous air, immediately encompassing the body of the Moon... That it is probable there may be inhabitants in this other World, but of what kind they are is uncertain..."--Discovery of a New World in the Moone (1638). by astronomer John Wilkins
Reading about the rover Curiosity taking bites of the Martian surface to analyze brought to mind an early and elegant piece of reasoning which put to rest the claims of life on the Moon. Belief in Lunar life is ancient, stretching back (for example) to Pythagoras, Plutarch and Lucian (who wrote perhaps the earliest piece on flying off to another non-celestial sphere). In more recent times bigger scientific names get thrown into that selenite melting pot: Carl Friedrich Gauss was a believer int eh possibilities of life there, as were the astronomers Helevius, Bode and (later on) Olbers, Littrow and Gruithausen. (Franz von Paula Gruithuisen [1774-1852] published his findings of urban structures in the very rough terrain above the Schroeter crater; his Wallwerk was quickly discredited though by astronomers with more powerful telescopes.)
[The seat of the problem for Gruithuisen--the complex structures at left thought by high in observation a low-powered refracting telescope to be streets and buildings. Source: NASA/JPL/University of Arizona, University of Arizona's HiRISE (High Resolution Imaging Science Experiment).]
In addition to the improvements in telescope resolving power--which provided better/more accurate maps of the lunar surface, particularly in the 1830's by Beer/Maedler and Lohmann--there was a major piece of thinking by Friedrich Bessel (1784-1846). Bessel was a superb observationalist and contributed vastly to the field with his work on stellar distance and identification, publishing his Fundamenta Astronomiae in 1818 and consequently constructing a star catalog of 63,000 objects. In 1834 he established that given the very sharp occulations that the Moon's diameter was found to be not very much smaller at all in relation to its measure by direct observation, meaning that the starlight was not deviated by atmospheric reaction, because the atmosphere of the Moon such as it was was 1/2000th of the density of that on Earth. Therefore: no perceptible atmosphere, no respiration, no life as it was understood to be "living".
Very pretty.
It is odd that given that work and the very barren maps being produced in the 1830's and the higher-powered telescopes that showed masses of scarred surface that there was a flurry of pro-Lunar-life stuff to hit the popular newsstands just a few years later. A famous (and first?) case of this was with Edgar A. Poe's "The Unparalled Adventures of One Hans Pfall" which appeared in the Southern Literary Messenger in June 1835 and which detailed the story of a debt-ridden Pfall who takes off to the Moon in a hot air balloon for it more debt-free climate, and who then sends back a Selenite messenger on another balloon, and, well, nothing really happens. A much ore effective hoax was perpetrated in the New York Daily Sun for six days in August 1835 in a story attributed to the great astronomer William Herschel about find vast and complicated life on the Moon. (In real life Herschel was a believer but I think never published on it.)
It is odd that such a fair amount of activity--something which was also the modern beginnings of ET-based storytelling of fear and hope--would begin a year after Besell's thinking. And in a reutn-to-home0again, the crater nearby the Wallwerk of Gruithuisen (who also claimed that the whitish polar icecaps of Venus were caused by fire ceremonies by practicing Venetians), named Schroeter, was done so in the honor of the astronomer Johann Schroeter (1745-1816), for whom Besell worked as an assistant. (Surveyor 2 landed about 100km from the Schroeter crater, as well.)
Posted by John F. Ptak in Astronomy, History of Dots | Permalink | Comments (0) | TrackBack (0)
JF Ptak Science Books Post 1791 [Part of the History of Dots series.]
Def. 1.1. A point is that which has no part.
Def. 1.2. A line is a breadthless length.
Def. 1.3. The extremities of lines are points
--Euclid, The Elements
Please see the associated post on the History of the West and the History of Lines: Telegraphs, Railraods, Treaties, and Barbed Wire.
I really don't mean to tangle this post up in what might be one of the most profoundly significant books ever written, mainly because the I'm talking about "dots" and not "points", though several points do come into play in the story.
The dots come into the story with the finishing of the great Overland Route, the Transcontinental Railroad, which was built between 18631 and 1869, and which via massive construction tied together various lines to make the fist continuous connections by rail between the American Atlantic and Pacific coasts. The construction for the vast missing connecting chunks were undertaken by the Central Pacific Railroad of California and the Union Pacific Railroad, building (respectively) their ends extending from Oakland (CA) to Council Bluffs (IA). (A map of the railroad line can be seen below in a clickable whole and then again in the "continued reading" part of the post in more detailed sections. Interestingly this map shows both a plan and profile of the line, and when you take a closer look at the bottom part of the map it is easy then to see why the Central Pacific had so many delays getting through the Sierra Nevada.)
The building of the railroad line was notoriously difficult, undertaken by companies desperate to build their ends fast and not using the best materials or doing the best work (with millions needing to be spent on repair of the Central Pacific effort as soon as the line was completed), or treating the largely immigrant workforce (mainly Chinese and Irish) fairly. But the job did get done and it got done relatively quickly, considering too that the first primitive locomotives didn't appear in the U.S. until 1831--it didn't take long at all to produce thousands of mile of line as well as the sophisticated machinery to run on them. The great engineer Oliver Evans waged a little war on the future by allowing himself to see the following:
"The time will come when people will travel in stages moved by steam engines from one city to another, almost as fast as birds can fly, 15 or 20 miles an hour.... A carriage will start from Washington in the morning, the passengers will breakfast at Baltimore, dine at Philadelphia, and sup in New York the same day.... Engines will drive boats 10 or 12 miles an hour, and there will be hundreds of steamers running on the Mississippi, as predicted years ago." --Oliver Evans, 1800 [Evans built the first stationary steam engine in 1800, and then in 1804 built the first steam engine powered boat.]
He wasn't talking about railroads per se, as the steam locomotive hadn't been invented yet. But 30 years later or so there was the first appearance of these machines, and then another thirty years after that they were running across the United States, which was a remarkable turnaround in the economy of transportation.
The very end of this story though is told in dots. When the Central Pacific and the Union Pacific met in the lonely Promontory Summit, Utah, there was an on-site celebration where the two lines were famously tied together using a golden spike. (Actually there were two gold, one silver one blended gold/silver, and one plain spike used int he ceremony.) The news of the event was carried out to the rest of the country via another new and remarkable medium, the transcontinental telegraph, which had been completed in October 1861 and which allowed nearly simultaneous communication between the two American coasts, with this innovation also taking place about 25 years after the general invention of the telegraph.)
It is interesting to note that it was during the Lincoln administration--in the earliest part of Lincoln's presidency--that these two great unifying elements were established. The railroad was started in the first year of the Civil War, and the telegraph finished just months into the conflict. It is ironic that the first communication going west-to-east by Stephen J. Field (on 24 October 1861) to President Lincoln spoke of the medium's great power in uniting the country, if only East and West: "will be the means of strengthening the attachment which binds both the East and the West to the Union". Which may or may not have been true--communications wouldn't necessarily unite, as the country was already deeply at war with itself North and South, and there were already ample telegraphs enough existing between the two that did not manage to keep the country firmly within itself.
Back to Promontory--the proceedings of the celebration were "broadcast" by telegraph, the event being very heavily listened-to news. There were speeches of course and then toward the end there was a sermon followed by a long entreaty to the almighty. That finished, the Central Pacific top man, Leland Stanford, was to drive home the final golden spike uniting the lines. When the spike was driven and finished, the news would be related by the telegraph as so:
"Dot. Dot. Dot."
Three dots would signal the end of the work, and the completion of the railroad. Stanford reportedly missed on his first swing with his silver hammer, but the news was sent out anyway, saying the work was done. The signifier relating the connection of thousands of miles of railway track being three simple dots.
Hart stereoview #355, detail, "The Last Rail - The Invocation. Fixing the Wire, May 10, 1869."
Courtesy National Park Service. [Source for image, here.]
Notes:
1. Abraham Lincoln signed the Pacific Railway Act in 1862 which set the stage for the building of the Transcontinental.
Continue reading "The Dots that Connected the Lines, 1869" »
Posted by John F. Ptak in History of Dots, History of Lines, Technology, History of | Permalink | Comments (0) | TrackBack (0)
Tags: Abraham Lincoln, Central PAcific, Leland Stanford, Oliver Evans, railroad, Transcontinental railroad
JF Ptak Science Books Post 1787 History of Dots Series
Ring the bells that still can ring
Forget your perfect offering
There is a crack, a crack in everything
That’s how the light gets in.--Leonard Cohen
I meant this title to this post quite literally—among the earliest mostly-accurate estimation for the speed of light (“c”) was made by Fizeau in 1849, and he not-literally made an image of what the speed of light “looked like”, the last dot in a crack that let the light in. It followed several hundred years of thinking on the speed of light including experiments employing lanterns (Galileo), the Moons of Jupiter (Ole Roemer), rain and starlight (James Bradley), and which in turn followed thought experiments by Empedocles, Aristotle and Descartes, who reckoned the speed of light to be instantaneous. The Parisian physicist Armand Hippolyte Louis Fizeau (September 23, 1819 – September 18, 1896) acted on a beautiful idea and constructed an elegant apparatus (again using lanterns) to make the first modern estimate of c. And, basically, as soon as he was finished and published the results in the Comptes Rendus in 1849, Leon Foucault—with whom Fizeau worked on many occasions—improved the apparatus and made an even closer approximation.
The way the apparatus worked was simple and powerful: Fizeau observed a light through an optical apparatus with a rotating toothed gear between observer and the entry of the light source; a mirror that was more than 5 miles away reflected that beam back through those same geared teeth of the disk. The disk could be made to rotate at specific speeds, the object being to calibrate the disk to prevent the light from going through the teeth of the gear to the mirror and then back again through the same gap. The point at which the dot o flight disappeared could be easily calculated and the speed of light extrapolated from there--which Fizeau estimated to be 313,300 Km/s or 194,410 miles/second. (In 1850 Foucault replaced the toothed gear with a mirror and produced a more accurate estimate of 185,093 miles/second, which in fact turns out to be very close to c.
Historical Estimates of c in Km/s
Posted by John F. Ptak in History of Dots, Information, Quantitative Display of, Physics | Permalink | Comments (0) | TrackBack (0)
Tags: Bradley, Fizeau, Foucault, Galileo, Huygens, Roemer, Speed of light
JF Ptak Science Books Quick Post Part of the History of Dots series
There are many board games in the history of boards games that utilize dots similar to this game, but this one seems mightily different given the dots' odd arrangement, and seeming disambiguation, and the means to the ends of the "race". It is an unusual arrangement, or so it seems to me, given the amount of blank space and the connected dis-connectedness of the routes. The game looks to me more of a capturing of empty space than a competition of getting from Paris to Bruges in the shortest amount of time...though not in a space-capturing sense of Go--just in defining the empty space.
Posted by John F. Ptak in Absurdist, Unintentional, History of Dots | Permalink | Comments (0) | TrackBack (0)
JF Ptak Science Books Post 1715 [Part of the History of Dots series.]
I wanted to land this post (the title of which is nearly as long as the article) on this little island in a wide sea of similar islands in the complicated 18th century history of embryology. Where we came from and how living things developed really wasn't very clear at this time, and really wouldn't be until Karl Ernst von Baer discovered the human ovum in 1827.1
The issue of the ovaries as ovens--of homunuclus and palingenesis and epigenesis, the imaginary male-dominant anatomy of reproduction–was pretty much somewhat solved by the beginning of the 19th century. Or at least the homunculus, the tiny but perfectly formed miniature human traveling along in sperm, was. This character is pictured here, riding in the squinty-eyed imagination of researcher Nicholas Hartsoeker2, who desperately wanted to see the thing, I think, and which found itself published in his book Essai Dioptrique in 1695. Spermatozoa was discovered earlier by the great Leeuwenhoek (1632-1723) and which was finally confirmed in its fertility hypothesis by Lazzano Spallanzani, who also happened to be an ovist, thinking that each egg contained a pre-formed embryo).
The woman as a simple baker of a gift of preformed life was a medical belief that helped perpetuate the supposed inferiority of women, and that the woman’s part in the procreative process was a simple oven. It was a difficult image/belief to resist, persisting well into the 19th century. But there was another side of this debate as well, and that was that woman didn't need the male sperm to proceed with the process of conception, with some scientists believing that coition had nothing whatsoever to do with the process. And so there were battle lines drawn in the primordial embryological sand of the 18th century, each demanding a sex-dominant role in procreation.
And if sperm contained a perfect, pre-formed human being, waiting to be planted in the oven of woman, what happens to all of those-pre-forms in the sperm that went "unused"? I imagine that if you were an 18th century pre-formationist that this would be a tricky and very uncomfortable question. If you could put on special sperm-specs that would allow you to see "ejected" and "unused" sperm in the same sort of ways in which we can see non-visible light, that, well, you might want to watch your step and avoid smashing a fully-formed human being that had the potential of living for weeks on its own with the benefit of anything else at all. I have to admit that even for me this makes the picture of this Earth not very savory. The author of "A Brief History of Sperm" at SeductionLabs.org points out that at least one English country doctor, James Cooke, thought that this ejecta "might not die", at all,
"... but ‘live a latent life, in an insensible or dormant state, like Swallows in Winter, lying quite still like a stopped watch when let down, till [they] are received afresh into some other male Body of the proper kind’."--from SeductionLabs.org, in its "A Brief History of Sperm".
It sounds a little like embryologico-guerrilla warfare.
In the middle of the sides drawing themselves up for battle, choosing male- or female-dominant mechanics of procreation, or a combination of both, were the supra-ovists, who claimed that in this mess that every human who would ever be born on Earth was already present in the ovum of Eve. There were some who tried to calculate the figure of how many people that ovum contained, but like the creation timeline of Bishop Wilberforce, the numbers were open to severe self-definign interpretations.
It is interesting to note these debates, though, because they weren't really finally settled until just three generations ago. (Or four if you're much younger than I.)
Notes:
1. von Baer published his discovery in his Epistola de Ovo Mammalium et Hominis Genesi (Leipzig, 1827), followed by his two-part Ueber die Entwickelungsgeschichte der Thiere in 1828 and 1837 on the history and evolution of animals. The original paper did not catch on, immediately, and took some years to be established. There was actually a paid competition going on in Europe at this time for the purpose of finding the ovum, and although aware of the award and thinking he had found the "prize", von Baer was not well-doisposed to the idea of the "race", and so really didn't participate. Jean-Louis Prevost (1790-1850) and Jean-Baptiste A. Dumas (1800-1884) also came to the conclusion that the "animacules" in the semen were responsible for fertilization. The deal wouldn't be solidified until Oskar Hertwig actually observed the fusion of the male and female material in the ovum of a starfish in 1876.
2. Hartsoeker ("heart seeker") (1665-1725) was a microscopist of high order in addition to being a physicist and a medical doctor, never actually saw this thing in his investigations--he iterated that the little person must be there. But he never did say that he observed it.
Posted by John F. Ptak in Absurdist, Unintentional, History of Dots, Medicine, History of | Permalink | Comments (0) | TrackBack (0)
Tags: embryology, hartsoeker, Homunuclus, ovam, ovist, SPallanzanni, Sperm