JF Ptak Science Books Post 1847
I wrote a few days ago on one great event of 1876--the invention of the Graham Bell telephone, the successful, most appropriate, best working telephone--mentioning that there were others great achievements in this year as well.. The four stroke engine (Nikolaus von Otto, the application of thermodynamics as applied to chemical change (J. Willard Gibb s, one of the very few portraits of whom would later hang on Einstein;s Princeton walls), Robert Koch's bacterial cultivation, Eugen Goldstein's work on Pluecker's (cathode) rays, all came into being in this year. But there was another remarkable development in that year that also contained a pretty clear vision of the future, of the shape of things to come.
That vision belonged to Lord Kelvin, whose work across many different fields, and at great and expanded levels, was extraordinary; but it was in his tide predictor that the future materialized.. He was one a few people who could really wear the future-specs really well, right alongside Strickland, and Babbage, and Bush, and Turing and von Neumann, a true visionary whose vision awaited the appropriate technology to machine it.
Thomson was attracted to many things, not the least of which were gadgets, like slide rules, to which he brought his profound capacities. He saw that these arithmetical tools were analog computers, and that bound together, they represented much more than just themselves, the seeds of far more powerful calculating engines. His great breakthrough was devising a tidal predictor, something that he devised in 1873, and wrote about in a seminal paper in 1876, describing what is basically the world's first analog computer.
"1876-1878, Baron [ Lord ] Kelvin builds his harmonic analyzer and tide predictor machines. The harmonic analyzer broke down complex harmonic, or repeating, waves into the simpler waves that made them up. The tide predictor machine could calculate the time and height of the ebb and flood tides for any day of the year."--York University, here.
See Thomson's excellent lecture given at the 25 August 1882 Southampton Meeting of the British Association for the Advancement of Science, here.