Poincare, Henri. "Sur l'Analysis situs, note de Henri Poincare ." In: * Comptes Rendus...des Seances de l'Academie des Sciences*, volume 115, #18, 31 Octobre 1892, the paper occupying pp 633-637 of the weekly issue. Published in Paris by Gauthier-Villars et Fils, 1892. Good condition. $500

This is the original weekly issue, in its original wrappers. This is also the first in a series of six subsequent papers (below) on algebraic topology, which also happens to be the first systematic study of modern topology, the founding paper by the "father" of algebraic topology (as noted in D.M. Davis, "Poincare's Role as the Father of Algebraic Topology", for "Science and art/Poincare and Duchamp, Harvard Conference, November 1999.)

Condition--this paper has been removed from a larger bound volume of half-yearly issues of the *Comptes Rendus*, with evidence of that removal along the spine. The paper wrappers are detached from the body of the issue, and as is the case with most of these wrappers during this period are somewhat brittle. (I have had three different runs of the *CR* and hundreds of individual issues, and this issue of the wrappers (which were printed on a more inferior paper) seems to be a constant.)

And from the Dictionary of Scientific Biography, the following introduction to the monumental Poincare:

"The development of mathematics in the nineteenth century began under the shadow of a giant, Carl Friedrich Gauss; it ended with the domination by a genius of similar magnitude, Henri Poincaré. Both were universal mathematicians in the supreme sense. and both made important contributions to astronomy and mathematical physics. If Poincaré’s discoveries in number theory do not equal those of Gauss, his achievements in the theory of functions are at least on the same level—even when one takes into account the theory of elliptic and modular functions, which must be credited to Gauss and which represents in that field his most important discovery, although it was not published during his lifetime. If Gauss was the initiator in the theory of differentiable manifolds, Poincaré played the same role in algebraic topology. Finally, Poincaré remains the most important figure in the theory of differential equations and the mathematician who after Newton did the most remarkable work in celestial mechanics..."--*Dictionary of Scientific Biography*, pp 52-3, volume 11.

Notes:

1. The papers in this series include:

Henri Poincaré, *Analysis Situs*, Journal de l'École Polytechnique ser 2, **1** (1895) pages 1–123. Henri Poincaré, *Complément à l'Analysis Situs*, Rendiconti del Circolo matematico di Palermo, **13** (1899) pages 285-343. Henri Poincaré, *Second complément à l'Analysis Situs*, Roceedings of the London MAthematical Society, **32** (1900), pages 277-308. Henri Poincaré, *Sur certaines surfaces algébriques ; troisième complément à l'Analysis Situs*, Bulletin de la Société mathématique de France, **30** (1902), pages 49–70. Henri Poincaré, *Sur les cycles des surfaces algébriques ; quatrième complément à l'Analysis Situs*, Journal de mathématiques pures et appliquées, 5° série, **8** (1902), pages 169-214. Henri Poincaré, *Cinquième complément à l'analysis situs*, Rendiconti del Circolo matematico di Palermo** 18** (1904) pages 45–110.

In the *Ouevres *of Poincare, under topologie or analysis situs are listed twelve papers, as follows:

"TOPOLOGIE. 1 - Sur l'Analysis situs (C. R. Acad. Sc., t. 115, 1892, p. 633-636). 2 - Analysis situs (J. Ec. Polyt., t. 1, 1895, p. 1-121). 3 - Sur les nombres de Betti (C. R. Acad. Sc., t. 128, 1899, p. 629-630). 4 - Complément à l'Analysis situs (Rend. Circ. Matem. Palermo, t. 13, 1899, p. 285-343). 5 - Second complément à l'Analysis situs (Proc. London Math. Soc., t. 32, 1900, p. 277-308). 6 - Sur l'Analysis situs (C. R. Acad. Sc., t. 133, 1901, p. 707-709). 7 - Sur certaines surfaces algébriques ; troisième complément à l'Analysis situs (Bull. Soc. Math. Fr., t. 30, 1902, p. 49-70). 8 - Sur la connexion des surfaces algébriques (C. R. Acad. Sc., t. 133, 1901, p. 969-973). 9 - Sur les cycles des surfaces algébriques ; quatrième complément à l'Analysis situs (J. Math. pures et appl., t. 8, 1902, p. 169-214). 10 - Cinquième complément à l'Analysis situs (Rend. Circ. Matem. Palermo, t. 18, 1904, p. 45-110). 11 - Sur un théorème de géométrie (Rend. Circ. Matem. Palermo, t. 33, 1912, p. 375-407)."